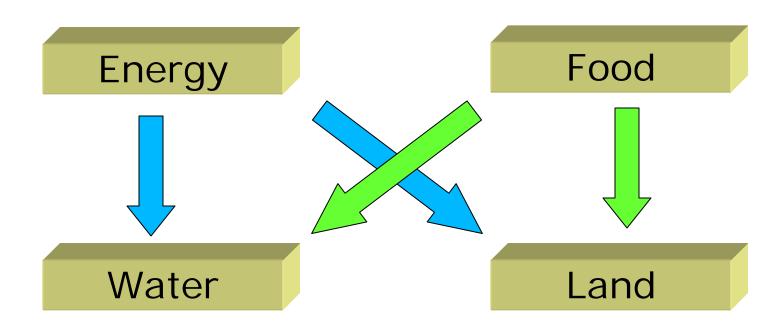


GRC Focus on Combined Interdisciplinary Modeling and Experimentation for Biofuel Process Optimization

Arnon Chait NASA GRC

Renewable Fuels Research Laboratory

Mission


Develop & optimize biofuel-based solutions as alternative aviation fuels

Scope

- Focus on 3rd generation fuels only:
 - No fresh water / no arable land / no food crops
 - Algae / halophytes / bacteria
- Develop hybrid experimental/modeling program to test/optimize biomass processing
 - Interdisciplinary focus including all relevant sciences together
 - Inherently community-based program
 - Practical, results-oriented methodology make measurable impact:
 - Work only on commercially realizable projects
 - Narrow deliverables horizon to 3 10 years only

Biofuels Have Inherent Limitations

Only viable candidates:

- Algae (micro and macro)
- Halophytes
- Bacteria

Fundamental Aeronautics Program Subsonic Fixed Wing Project

As Well As Economic Barriers

- They are still 10-100X too expensive to compete
- Except for (maybe) select 3rd Generation biofuels, it will be impossible to make them economically viable without both or either of:
 - Genetic modifications
 - Process engineering
- We must only invest in bringing forward projects which may be economically viable and which do not compete with food/land/fresh water

3rd Gen Biofuels Have Significant Potential

Feedstock	Gal/Acre	Liters/Hectare
Soybean	44	400
Sunflower	88	800
Rapeseed	110	1000
Castor	140	1300
Jatropha	170	1500
Oil Palm	650	5800
Biomass FT	>500	>5000
Algae	>5000	>50000

The Key Is The Incoming Energy Source

Sunlight

- Limited to ~300 w/m^2
- Further limited by conversion efficiency
 - Photo Active Radiation (PAR): ~47%
 - Biological conversion to biomass: ~25%
 - Total max theoretical conversion efficiency: ~12%
- Further limited by process efficiency
 - Total realizable conversion efficiency: 0.1-3%

In Comparison

- PV conversion efficiency: ~10-15%
- Solar-Thermal conversion efficiency: ~15-20%

All Sunlight Driven Processes Are Limited

- 300 W/m² ~ 10 GJ/m²/year
- Assume biodiesel: 135 MJ/gallon
- At perfect conversion: ~70 gallons/m^2/year
- At 1% conversion: ~ 0.7 gallons/m^2/year
- At \$3/gallon: \$210 or \$2.1 per m^2/year
- And you must cover CAPEX
- And you must cover OPEX
- And you must pay VC 10-20% IRR
- BTW: PV/Solar-Thermal are limited by same!

Anything Other Than Light Can't Make It

Food (sugar):

- GM/synthetic bacteria/organism to convert sugar to lipids
- Inherently inefficient conversion process
- For example:
 - 1 bl = 159 L = 112 kg gasoline
 - 20% overall conversion efficiency requires 560 kg sugar
 - @\$370/MT the biomass required costs \$208
 - Overall cost is much higher (bioreactor, processing, etc.)
- 2 step biomass production which competes with food/land/fresh water

Biomass Production: Where Should We Put Our Resources?

Light Spectrum

- Wider PAR

Biology:

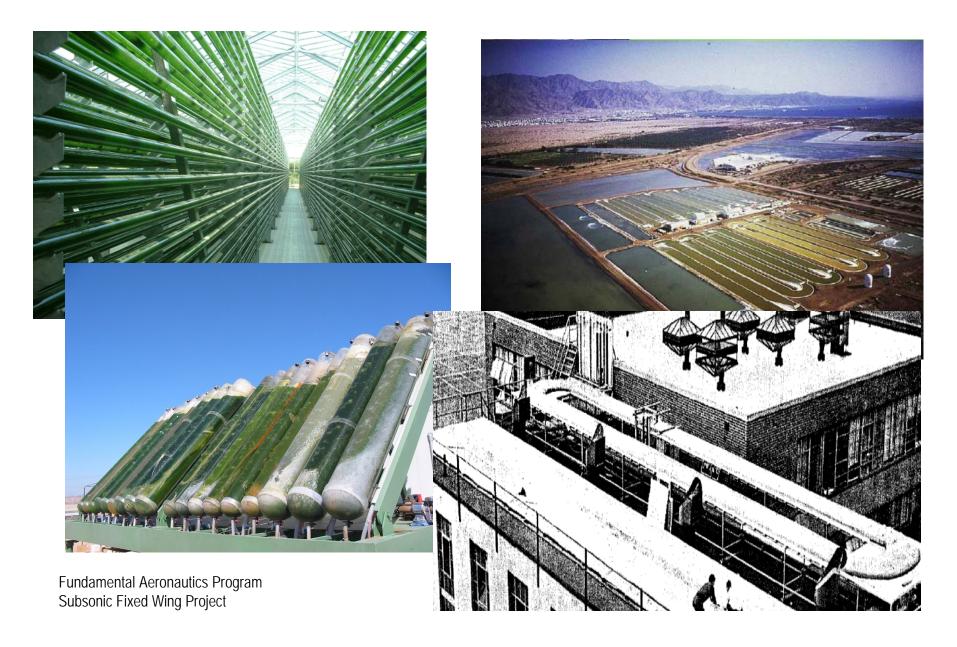
- Photon conversion
- Light saturation
- Respiration/excretion
- Photo respiration/inhibition
- Temperature

Process:

- Light exposure
- Nutrient exposure
- Temperature

Fundamental Aeronautics Program Subsonic Fixed Wing Project

- Aquatic eukaryotic organism, containing chlorophyll and other pigments, and can carry on photosynthesis
- Structure ranges from microscopic single cells to meter sized plant structure
- Produces:
 - Triglycerides and fatty acids
 - Lipids, long chain hydrocarbon
 - Carbohydrates, sugars and starches
 - Protein biomass



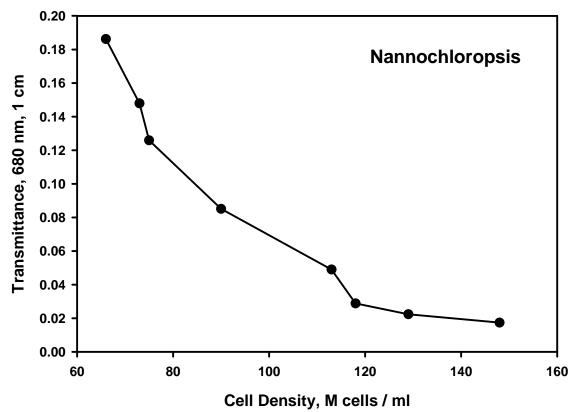
Algae Is THE Current Rage

Two Basic Biomass Production Processes

	Open Pond	PhotoBioReactor
Efficiency	20 g/m^2/d	100 g/m^2/d
CAPEX	Low	High
OPEX	Low	Low-Medium
	\$17/kg - \$0.5/kg	No hard numbers
Lipid Extraction	Inefficient	Potentially efficient
Unique Issues	Light exposure: very large area Bio competition Temperature control	Fouling/cleaning Bio contamination Scale-up

Fundamental Aeronautics Program Subsonic Fixed Wing Project

Open Ponds Have Not Changed


Subsonic Fixed Wing Project

Light Availability Is Main Issue

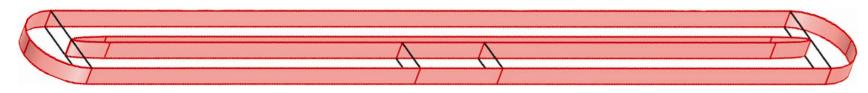
Typical pond depth: 20-30 cm

Process Optimization

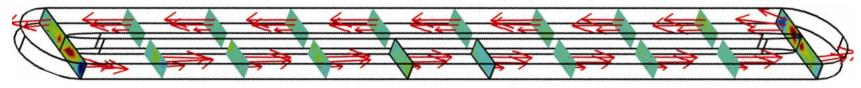
- Optional when you sell a product for \$2,000/kg
- A must when you sell a product for \$1/kg

Why Models:

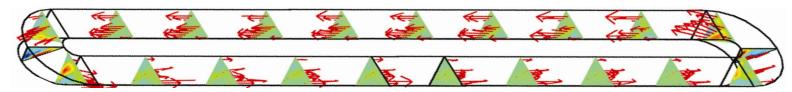
- Experimentation alone can NOT suffice too many variables, non-linear interaction, scale-dependent
- Investing in very large systems mandates predictive models
- Biofuels have extremely narrow profitability margins (if any)

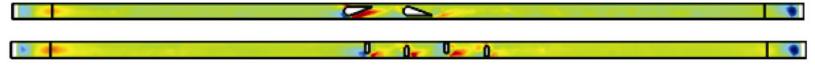

Process model hierarchy

- Economic system level models
- Engineering models to specific issues
- 1D biology models
- 3D integrated biology + transport models



Engineering Models: Example


Key issue for open ponds: light availability = mixing


Base design has very little inherent vertical motion

Study different cross-sections

Investigate static/dynamic low-cost mixing devices

1D Biology Models Can Be Very Complex

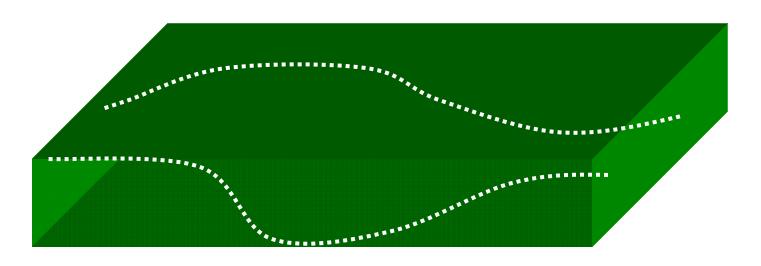
```
d(biomass)/dt = f(concentration, photosynthesis,
respiration, excretion, mortality, predation,
sinking/floating, ...)
```

```
Photosynthesis = Max rate x prod limit x biomass

prod limit = light limit x nutrient limit x temp limit

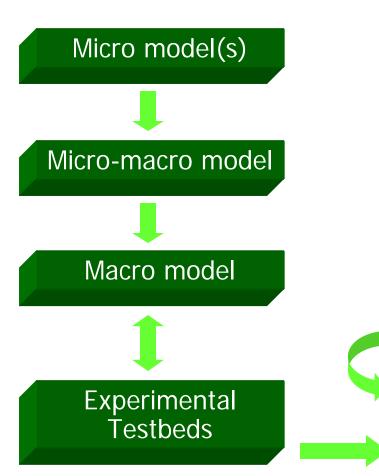
light limit = factor x photoperiod x ave light x

extinction coefficient


extinction coefficient = water ext + phyto ext + dead matter

ext + aggregate ext + ...
```

Aside: system biology models not justified


And Biology + Transport Could Be Daunting

- Local conditions (V, T, nutrient concentration) vary in 3D
- Light is f(algae concentration, ...)
- Time constants for growth vs. transport vs. daily cycles are vastly different
- Local growth is f(local conditions, history)
- Single micro-algae biology model must be transformed properly into a volume-averaged statistical model

Overall Model Is Useful For Ponds & PBR

Basic biology:

 Metabolism, energy conversion, growth, exchange w/environment

Coupling to large-scale transport:

Distribution function approach

Large scale transport processes:

- Overall geometry, flow, nutrients
- Process optimization

Key Challenges

- Focusing on projects that have a chance
- Finding common language amongst scientists
- Not relying on exotic biology alone to save the day
- Remembering that "bio" = "plants" = "agriculture"
 - Solutions must be very large scale
 - Very small differences can have very large effect
 - Cool engineering is just that; Simple, low cost solutions are what's needed
- Recognizing the Manhattan-scale required to make any impact
- Adopting a holistic approach:
 - Solutions will be integrated: fuel/food mix
 - Solutions will be varied and customized to geography